Reflections on “Crossing the Imaginary Line”

Early September, Environmental Science & Technology, a prestigious journal of the environmental engineering field, published an editorial titled “Crossing the Imaginary Line.” The editorial, written by Editor-in-Chief, Prof. David Sedlak, argues that environmental engineering academics should not cross the “imaginary line” that separates the “dispassionate researcher from the environmental activist” as it threatens the objectivity of research and discourages funding for basic research. Or in other words, by advocating for a certain environmental position, the researcher risks academic integrity, and retaliation from funding sources and political entities. The question of not only the researcher’s, but the engineering practitioner’s ethical responsibility to the public has long been debated within the engineering community. The appearance of this editorial in such a major publication has sparked much debate between environmental engineering researchers across the country.

TwitterCrossingLIne.PNG

Despite my lack of experience and not being a researcher, I wish to express my thoughts regarding this topic from the perspective of a student still very much in the nascent stages of his career as a practicing engineer, as the ethical responsibility of engineering is often skimmed over in engineering coursework, and always deserves more attention. In addition to my own thoughts, I will include in my discussion the written responses from Prof. Marc Edwards and the Flint Water Study, Prof. Charles Haas, and Ph.D. student Maya Carrasquillo. These responses, along with the original editorial, offer an array of perspectives and help inform my own as I attempt to shape an opinion.

Continue reading

Advertisements

Any color, as long as it’s black

WEFTEC Exhibition Floor

WEFTEC Exhibition Floor

Last week, I had the opportunity to visit the Water Environment Federation’s Technical Exhibition and Conference 2015 (WEFTEC) down in Chicago for a day. As this was the first professional conference I have ever attended, I was looking forward to the experience and learning about the latest and greatest in Water Technology. WEFTEC is North America’s largest convention for water professionals, and I was immediately impressed (and overwhelmed) by the size of the exhibition floor (although I was later told that this year’s conference appeared smaller than last year’s). There were vendors from all over the world – China, South Korea, Germany, France, Norway. There were even areas where teams competed in events such rescuing a dummy worker in a confined space, or patching up a 6 inch pipe. To someone not interested in the water profession, this sight would be slightly comical, if not boring, but to a newly-minted engineer like myself, the sight was overwhelming.

Continue reading

MKE H20 101

History Lesson incoming.

Having gone to school in New York, I’m often asked why I decided to come back to the Midwest after graduation. One of the main reasons I came to Milwaukee to start my professional career was due to the city’s history and optimistic future with water and water technology. I thought I’d spend this post by (very) briefly covering the history of Water in Milwaukee so that readers gain a greater appreciation for Milwaukee, and just urban water management in general.

Continue reading

New Solutions to Old Problems

bulb-313714_1280

Source: Pixabay

Never before in our modern society has water been such a priority for individuals, cities and nations, and it will only continue to grow in importance. However, even with such increased presence and general acknowledgement of the problems at hand, there seems to be a lack of public understanding of the issues at stake and what is (or isn’t) being done to address these issues. So in this blog post, I’ve set out on the daunting task to give a summary of the water-related problems our world is facing and the what is being done to address these problems. Water has been used for the functioning of societies ever since the rise of the agrarian life-style, and as such, has been viewed as a well-understood phenomenon and a natural process under the full control of human technology. We’ve learned how to produce drinkable water, drain and create entire lakes to grow food and even to divert or reverse the flow of rivers to prevent floods. Our mastery of water seems to be self-evident and there seems to be no need for improvement. But current issues prove that this is a false assumption resulting from technological hubris. There are still many advancements that can and must be made in regards to water – advancements that require not only political will and social education, but technological innovation. Technology still has a very large role to play in the search for water solutions, and the role of the environmental engineer is essential now more than ever.

The goal of this post is to give the everyday reader a basic but nuanced understanding of water issues and to explain why one should care about them. This post will explain the importance of engineering/technology in searching for and implementing solutions. Additionally, I will also talk about how water engineering is not some ancient, well-understood field that only requires by-the-book implementation of old technology, but one filled with state-of-the-art opportunities to expand knowledge and advance humanity.

Continue reading

Should I stay or should I go?

When I first saw the teaser trailer for Christopher Nolan’s Interstellar, I knew it was a movie that I wanted to see. It was a simple trailer in terms of special effects and action, but it spoke deeply and directly to the audience. When the first trailer came out, there was very little information on the plot, but I knew it had to do with space travel, and took place in a bleak future. I was especially struck with the line “The world doesn’t need any more engineers. We didn’t run out of planes and television sets. We ran out of food.” This line cemented my desire to watch the film – I was excited to see a science fiction film rooted in science fact, and I was also worried that this movie would give off the wrong impression of what engineers do to the public.

I won’t give away the plot of Interstellar for those who have not yet seen it (and if you haven’t yet, I highly encourage you to go). I just want to talk about my thoughts on the themes presented in the movie, mainly space exploration and engineering and science.

Continue reading

The Art and Engineering of Infrastructure

In a previous post, I brought up the idea of making our city’s infrastructure more aesthetically pleasing. Infrastructure – almost by definition – is hidden, buried underground or constructed in a far-off area away from the central city. By making our infrastructure aesthetically pleasing and placing it at the center of attention, the public has a better chance of appreciating the complex systems that support our modern lifestyle. There’s a good chance that our relationship with our built environment can rapidly change when we begin to appreciate the beauty of the systems in place.

The Land Art Generator Initiative (LAGI), has this exact goal in mind. According to their website, LAGI wishes “to advance the successful implementation of sustainable design solutions by integrating art and interdisciplinary creative processes into the conception of renewable energy infrastructure.” This requires the collaboration of architects, urban designers, landscape architects, scientists and engineers all working together to create a work of art that generates physical and emotional value.

Every two years, LAGI holds a design competition that combines a major infrastructure sector with public art. In 2012, the competition centered around New York City’s Freshkills Park, drawing 250 submissions from around the world to redefine waste management to the public. This year, 2014, the project description was to design a public sculpture that also continuously distributes clean energy into the electrical grid, proving that our energy infrastructure can be both essential, and beautiful.

The first place winner was designed by Santiago Muros Cortés. Titled, “The Solar Hourglass,” this sculpture acts as a solar central receiver, concentrating solar energy through the use of flat mirrors to heat up a steam turbine and generate 7,500 MWh/year. Aesthetically speaking, the sculpture is quite elegant, consisting of two simple pieces that mirror each other, with the bright glow of the sun at the center (whether this would be a danger to eyesight remains to be seen). It certainly looks like something that should come out of a science fiction novel.  You can find the other winners and submissions at the competition website.

Source: landartgenerator.org

What attracts me to this competition is the idea that both science and art can be blended seamlessly together to create a product that could not have existed without this collaboration. I’m glad there are organizations like LAGI who strongly believe in the benefits of this intersection. The built environment inherently contains character, and this character must be expressed in order to garner full appreciation. Additionally, the built environment must also support the livelihood of the people that inhabit it. This requires design guided by scientific principles and engineering thinking. As I learned recently, architecture that does not consider engineering cannot fully unlock its full potential, and engineering without art cannot truly connect with the people.

By making our infrastructure the center of attention, our entire perspective regarding the built environment changes. It may not be easy to see at first, but consider how our line of thinking and behavior would change if we were cognizant of the many systems that support our way of life. A greater appreciation for the built and natural environment develops, and we are more aware of our place and effect we have on our surroundings. It may take a little more money to hire an architect to design something like a power plant, but consider the added benefits it will bring. What a world it would be if there were children pulling their parents by the hand, saying “Let’s go visit the garbage plant!”

Our Magical World

The most common criticism of the fantasy genre is that it can lead to unhealthy escapism. Why settle for the boring, drab world in which you live, when you could immerse yourself in a world full of flying beasts, floating cities, and big baddies that need to be taken down? For me, fantasy stories are sources of inspiration – why can’t we built floating cities? Fantasy, by definition, revolves on places and things that have never been, and most reasonably, never will be. But that doesn’t mean that Fantasy isn’t based on real world people, locations, or history. However, it can be easy to forget that the world we live in isn’t really drab or boring, it’s teeming with all sorts of life and features bizarre locales. At times, it seems magical.

Mammoth Hot Springs, Yellowstone National Park (Source: Matthias Kabe, wikimedia commons)

Taking inspiration from life to influence design is called Biomimicry. For example, scientists study the tardigrade to learn how the creature survives in such extreme environments (such as the vacuum of space)  to design materials to protect humans in similar environments. Extreme environments, such as Deserts or the Arctic, are great areas to find inspiration. For instance, the Atacama Desert, which receives just a few millimeters of rain per year, hosts plants that have adapted by harvesting marine fog. Microorganisms in the high-pressure deep sea have developed thick waxy cell membranes. Other organisms have evolved resistances to high alkalinity, cold, heat, and even radiation. There are numerous examples of biomimetic designs and unique creatures. You can find some of them at the Ask Nature, a site developed by the Biomimicry Institute.

Similarly, we can also take inspiration from the environments themselves. The Earth features many types of ecosystems, some of which are quite bizarre and look like they belong in a fantasy world rather than our world. Through a combination of biology, geology, and chemistry, magical ecosystems can result.

The previously mentioned Atacama Desert has incredibly salty soil. The salt crystals in the soil attract water from the air, allowing microbes to gain access to water. Mono Lake in California has soil and water full of toxic metals due to mine runoff. The water is highly saline, has a high pH, and has dangerous levels of arsenic.  Even so, brine shrimp live in these waters, and eat bacteria and plants adapted to these levels. It is one example of arsenic-based life.

Oklo Natural Nuclear Reactor (Source: Andreas Mittler, http://www.ans.org/pi/np/oklo/)

In a uranium mine in Oklo, Gabon, Africa, a French nuclear community noticed small but significant amount of Uranium-235, an isotope used in nuclear power reactors. Uranium is a key ingredient for nuclear reactors, which work on the principle of nuclear fission (splitting an atom to release the energy inside). Commercial reactors need at least 3% of U-235 to function. The land in Oklo reached 3% U-235 and with the assistance of the surrounding groundwater, started a naturally occurring nuclear fission reactor. Unfortunately (or fortunately), the reactor stopped about a million years ago, but scientists are studying the site to see how natural environments are dealing with the radioactive materials to inform how to deal with man-made nuclear waste.

Blood Falls (Source: United States Antarctic Program, http://photolibrary.usap.gov/)

The Blood Falls is a popular unique system. Located in Antarctical, the Blood Falls flows from a trapped lake high in salinity and iron (which gives the red color). Within the red water, microbes have evolved independently from the rest of the world, and have adapted to exist in an environment with no light, little heat, and no oxygen. You can find additional examples of natural wonders at Atlas Obscura.

There are also naturally occurring phenomena, such as bioluminescent bays, waterspouts or fire whirls, which, while not as inspiring in an engineering context, exemplify the marvelous danger of nature.

These locations offer insight into solving many engineering challenges. Often times, while engineers struggle with challenges, the Earth has already found a solution (after all, the Earth has been around much longer than we, as humans, have). In an earlier blog post, I mentioned the design of wastewater treatment plant based on the biogeochemical cycle of a lake with high pH to produce a purer Syngas and byproduct for cement production. By studying how these ecosystems function, we have opportunities for engineering designs that emulate these environments and incorporate natural processes and resources. We can also develop methods of utilizing unique ecosystems for the benefit of society by having them serve as “naturally occurring factories.” Our world is full of natural wonders that we can learn from to engineer systems that work with our environment, rather than against it. By doing this, we could actually create places we never thought would have existed. Our world is a magical place, we can contribute to the magic.